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SUMMARY

In the paper a logistic model for the analysis of threshold traits observed at several
time points is discussed. The theoretical considerations are illustrated with the use of
data from a real experiment concerning the lodging of three varieties of seed pea. In
the analysis three estimation procedures, following from the least squares principle,
were used and compared.
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1. Introduction

In experimental research various traits are observed. Usually they are
represented by continuous or discrete random variables. Nevertheless, there are
traits, which are naturally continuous in character, but the results of their
observations are statements about the membership of the studied unit in a definite
category, as in the case of discrete random variables. Such traits include for
example physical or mental state of patients, inclination to disease, resistance to
frost or resistance of cereals to lodging. The continuous nature of such traits is
hidden and only the results of classification of observed units are analyzed in
detail.

For example, the states of patients, recorded during medical treatment, can be
recorded as poor, good or excellent. Another example is lodging, conventionally
related not to a single plant but to whole plots, which is usually expressed using
the 9-point grading scale.

The relation of the hidden continuous random variable with a discrete ordinal
scale is determined by the separation points of successive categories. In literature
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the separation points are called thresholds (Misztal et al., 1989) or cutpoints (see
Miller et al., 1993), and the traits are called threshold traits.

The probability of success is associated with each category. For an
experimenter who carries out an experiment, in which the studied threshold trait is
lodging, it may be interesting not only to estimate unknown probabilities of
individual categories or cumulative probabilities, but above all to consider the
possibility of their comparison for various treatments, for example, for various
varieties of cereals.

The aim of the paper is to present a method of analyzing of such probabilities
by the use of a logistic model in application to lodging data. The sought
probabilities can be estimated using various methods under different model
assumptions. Three of them, based on the least squares principle, are shown and
compared in the paper. The theoretical considerations are illustrated by the
analysis of data taken from a real experiment.

2. A model for observations

To begin with, let us assume that the studied threshold trait represents a hidden
continuous random variable. Moreover, let the domain of this random variable be
divided by k—1 unknown numbers g, j=12,... k1,

—0 < G < 6<...< 6/(_1<°°,

into k separate parts representing successive categories. And finally, let F be the
cumulative distribution function of the hidden continuous random variable. Then
the value of F at the point & is the cumulative probability,

FO)=m+m+..+m, (D
where 7; denotes the probability of success of the I-th category.

Now we will assume that in the experiment there are s groups, each including
mi, 1 = 1,2,...,5, homogeneous units, which are classified in k separate categories.
Classification of all units is repeated at several time points. Of course with the
passing of time the values of variables which characterize each group are
changing which can influence the decision about the membership of each unit in a
particular category.

Let z; be a vector of variables characterizing the i-th group of units. They are
called covariate variables, or shortly, covariates. Moreover, let 7. be the
probability of success of the j-th category for units of the i-th group classified at
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the c-th time point, and let % =7 + 7 + ..+ Wi be the j-th cumulative
probability. This probability is connected with the threshold point £, modified by
the unknown effects of covariates, describing the i-th group. This relation takes
the form

F'(Jic) = 6.+ 27, )

where 7 is a vector of unknown effects of covariates. The component z,7
represents here the total period-group effect, which, when different from zero,
moves specifically the cutpoint 6.

During the experiment the data are collected. For each group they comprise the
number of successes of each category in each period as well as the values of
covariates in each period. Sometimes the values of a given covariate may be the
same for all periods. This is so, for example, when the covariate is a dummy
variable indicating the group membership.

The results of classification of all m; units with respect to k disjoint categories
are usually modeled with the use of the multinomial distribution. For the i-th
group in period ¢ such distribution is determined by the number m; and a vector

T

nic = (mic’ﬂ;lica- . "ﬂ}(ic) ’

where the probabilities 7., %;c,. . ., e SUM Up to one.
The natural unbiased estimator of the probability vector ;. is the vector p;. of

observed frequencies. Its dispersion matrix takes the form (see Mardia et al.,
1979, p.57)

ic Ve

D(p,)=-—(x. -, 7) 3)

where nfc is a kxk diagonal matrix with elements of the vector Tt on its diagonal.

Now, let p; be a vector composed of all observations corresponding to the i-th
group, i.e.

P: = (PiysPips-sPi) -

If the vectors pi, ¢ = 1,2,....t, are considered as independent, then the
dispersion matrix of random vector p;, D(p;) = Vi, is a ckxck block-diagonal,
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where blocks on the main diagonal have the form (3). Otherwise, when we cannot
assume the independence, the sub-blocks apart from the diagonal in D(p,) are of
the form

“)

ic’%ic

Cov(p,,,p,..) = l—(l'[“”” -n.xZ.),
mi

where the pr-th element of a kxk matrix [T is the probability that the unit at the
time point ¢ will be of the category p and at the time point ¢’ will be classified to
the category r.

It is easy to notice that the vector ;. of cumulative probabilities,

Yic = (ylic’ ylic""’ }/kic)T’

follows from m;. by a simple linear transformation. Moreover, because E(p;.) = ;.
for ¢ = 1,2,....t, then E(p;) = ;;, where

(T T T\T
o =(m,,m,,..., W,

is a vector of all probabilities corresponding to all categories in all periods. In
consequence, the left hand side of (2) applied to all j = 1,2,....k-1 and c = 1,2,....1
represents the mapping of the expectation of the observed vector p; into a new
vector 1);, which by the right hand side of (2) is modeled in the form

n,=0+Zr, (5)

where 0 is a vector of unknown thresholds, Z; is a matrix of values of covariates,
while 7; is the vector of unknown parameters. The mapping f; —1); is known as a
link function whereas the relation (5) fulfils the assumptions of the generalized
linear models (McCullagh and Nelder, 1989).

3. The link function and estimation

Various models, belonging to the class of generalized linear models, differ
mainly in forms of the link function (see McCullagh and Nelder, 1989, p.30 or
Lindsey, 1997, p.19). If in the equality (1) it is assumed that F is the distribution
of the standard normal random variable, then the resulting model is termed as
probit. However, the estimation of parameters in such a case encounters
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numerical problems connected with inversion of the distribution function of the
standard normal variable. It is easier to find a solution of (1) by assuming that F is
the standard logistic distribution (see Rao and Toutenburg 1999, p.316), which
has a simple form of the inverse function. Such a model is termed as logistic (see
Agresti 1984, p.104).

In the analysis of categorical data the logistic models have wide applications
(see McCullagh and Nelder, 1989). As referenced by Miller et al. (1993), Koch et
al. (1989) apply this model to describe a clinical trial of a new treatment for a
respiratory disorder in which 111 patients, assigned into two groups and visited
four times during the following-up period, were classified with respect to 5-point
ordinal scale.

The logistic model corresponding to the equality (2) takes the form

— y‘i:: _ T s _ -
ﬂji‘,—logl_;m—(?jc+z,'ri, J=12,.,k-1, c=12,.,t, (6)

where 7). follows from the logistic transformation of the cumulative probability
%ic- This set of equations can be written in compact form as

n, =C/ log(L,z)=0+Z71,, @)
where

N = (’71i1”72i1""’77k—l,i,t)r

is a #(k—1)-dimensional column vector, which is the image of m; in the logistic
transformation. The matrix L; in (7) is block-diagonal with ¢ blocks L;, each L;.
being a binary matrix which postmultiplied by m; gives the sums %;. and 1-%;.
The symbol log(L:mt;) denotes a vector of logarithms, whereas C’ is, alike L;, a
block diagonal matrix, where each of the blocksC., ¢ = 1,2,...,¢, is a matrix of

contrasts corresponding to the differences of logarithms in (6).
Because p; is asymptotically normal,

pi ~N(ni9vi),

the random variable n(p;) is asymptotically normal as well (see Rao, 1973, p.388
or Agresti, 1984, p.247),

np,)~ N(x,),G,V,G)),
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where G; is a matrix of partial derivatives
G =9
' om

i

determined at T; = p;. Actually, the matrix G; is block-diagonal with blocks of the
form (see Grizzle et. al. 1969)

o= Me T, ®)

T

where D, = (L;7t;)°.

Now, let

nE)=Mm"(P), (P2, ... @),

let X stand for a matrix of the form
X= (1s®I,(k_1)! diagZ,-),

and let B be a vector of all parameters,

p=(0",7],7,,...,7)".

Then the model for all observations from all groups can be written as

Em(p) =XB, Dn(p)) =Z, ®

where X is a block-diagonal matrix. Its blocks, being the dispersion matrices of
n(p), i = 1,2,...,s,, are of the form G;V,G;”, where the structure of V; depends on
the assumptions about the vectors p;, ¢ = 1,2,...,t. If they are considered as not
independent, then the formula (4) must be used. Note, that these matrices are
expressed through more elementary probabilities than those forming the vectors
... In effect the use of (4) requires much more detailed description of the results
of the conducted experiment.

The equations given in (9) form a basis for estimation of the parameters
contained in the vector B. Under normality, the estimate of B can be obtained by
the maximum likelihood principle, which, however, leads to a system of non-
linear equations. It can be solved by the Newton-Raphson method or, after slight
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modification, by the Fisher scoring method (see McCulloch and Searle 2001,
p.105 and 143). Much less elaborated methods follow directly from the simple or
weighted least squares approach.

In the first case, the dispersion structure of the model is completely ignored,
and the estimator of P takes the standard form

Bsis = (X'X)"'X'n(p),
provided that X is of full column rank.

In the second case, instead of the unknown dispersion matrix Z, its sample
counterpart can be set. Its form depends on the assumptions about the vectors p,
¢ =12,....t, as well as on the data collected. Let Sy denote the sample dispersion
matrix when the random vectors p;, ¢ = 1,2,...,t, are considered as independent
and let S stand for the same matrix but without this simplifying assumption.
Anyway, to assure the non-singularity of S or of S it suffices to choose in (8) as
Ci,c=12,...t, i = 1,2,....5, the matrices of full row ranks. In result the two
weighted least squares estimators take the forms

Bwso = X"(So) " X)X So)™(p), Bwis = X'S™X)'X'Sn(p),
respectively.

The dispersion matrix of these estimators can also be evaluated in a similar
way, i.e.

D(Bsis) = (X"X)"'X'SX(X"X)™,
and

D(Bwiso) = X"(So)"X)™

Of course, if the collected data are sufficiently rich then Sy can be replaced by
S as well.

4. An example

In an experiment carried out at the Research Centre for Cultivar Testing in
Stupia Wielka 14 varieties of seed pea were tested with respect to lodging. The
lodging was determined on a 9-point ordinal scale: 9 - stems are standing, ..., 1 -
stems are lying. Each of the varieties was repeated on 20 plots and the
observations were recorded successively five times during the experiment. To
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simplify the illustration the neighboring categories were combined into three only
and only three varieties (KOS, PRH1599, POMORSKA) were chosen. The
number of periods was also reduced to three. The data obtained are presented in
Table 1.

Table 1. Results of classification of 60 plots at each of three time points

KOS
c=2 c=3
cat. I cat. Il | cat. III cat. I cat. II | cat. IIT
cat. I 5 5 4 cat. [ 2 5 7
c=1 jcat. Il 0 4 1 c=1 jcatll 0 1 4
cat. ITIT 0 0 1 cat. ITI 0 0 1
c=3
cat. I cat. IT | cat. IIT
cat. I 2 3 0
c=2 |catII 0 3 6
cat, I1I 0 0 6
PRH1599
c=2 c=3
cat. I cat. IT | cat. III cat. I cat. Il | cat. III
cat. I 5 1 6 cat. I 1 4 7
c=1 |catII 0 2 5 c=1 |[cat Il 0 1 6
cat, III 0 0 1 cat. ITI 0 0 1
c=3
cat. I cat. Il | cat. IIT
cat. I 1 4 0
c=2 Jcat Il 0 1 2
cat. III 0 0 12
POMORSKA
c=2 c=3
cat. | cat. Il | cat. III cat. I cat. I | cat. III
cat. | 16 1 1 cat. I 12 4 2
c=1 |cat Il 0 1 0 c=1 |catll 0 0 1
cat. ITT 0 0 1 cat. 11 0 0 1
c=3
cat. I cat. IT | cat. ITT
cat. I 12 3 1
c=2 jcatll 0 1 1
cat. III 0 0

According to the notation of Section 3 we have s = 3 groups (varieties), ¢ = 3
time points in which the observations were carried out, and k = 3 separate
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categories concerning the levels of lodging. In result, the vector 0 in the model (7)
has now the form

e = (9111 621) 612’ 922’ 0139 923)T?

where . denotes a cutpoint of the j-th category for the c-th time point. The vector
of covariates for each variety reduces here only to one dummy variable indicating
the group membership. In consequence Z; =1¢ for i = 1,2,3, while the matrix X
and the vector B in (9) take the forms:

X = (1,81, L®1,), B=(0", 7, T2, T5), ' (10)
where 7 is the effect of i-th variety.

It is easy to notice that the matrix X in (10) is not of full column rank. This

inconvenience can be avoided by replacing the three group effects 7, %, 7 by two
contrasts

PH=T-—-0O, Po=7—-70%

Assuming that the group effects sum to zero, the original parameters can be
expressed uniquely in terms of contrasts by the following equations

3t =pu+ P2, 3%=-200+ P2, 3%=p00-2pP0). (11)

In result, the replacement of the 18x3 submatrix 1;® I in X with the 18x2
matrix of form

completes the reparametrization of the model.

Using the collected data, the estimates of cutpoints &; and contrasts g, and
P2y Where obtained by the simple least squares (SLS) method as well as by two
weighted least squares methods (WLS®, WLS). The results are presented in Table
2. In the last two rows the values of the Wald statistic (see McCulloch and Searle

2001, p.24), for testing hypotheses concerning the separate contrasts, are also
given.
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Table 2. Estimates of parameters

SLS S.D) WwLS® (SD) WLS (S.D)
o, 1.150 | (0.334) 1.287| (0.311) 1.357| (0.314)
&, 2.944| (0.592) 2.876 | (0.566) 2.632 | (0.515)
&, -0.270} (0.307) -0.188 | (0.299) -0.152| (0.280)
&, 0.880| (0.334) 0.807| (0.303) 0.880| (0.297)
6 -1.579 | (0.449) -1.213| (0.348) -1.180| (0.349)
& 0.045| (0.290) 0.083 | (0.286) 0.147 | (0.263)
Loy 0.481| (0.590) 0.521| (0.370) 0.718 | (0.494)
Py -1.597| (0.679) -1.876 | (0.423) -1.895| (0.607)
Z 0.66 1.99 2.11
Z, 5.53* 19.70%* 9.74%*

First observe that the WLS? and WLS methods provide the estimates which are
more similar than that following from the SLS method. On the other hand the
estimates of thresholds obtained by the WLS method in majority cases appeared
to be more precise, in terms of their standard deviations, than those following
from the WLS® method, which in turn are better than those obtained by the SLS
method. However, in the case of estimates of contrasts 0 and 0, which are of
main interest, the WLS® method appeared to be the most precise. This can
indicate that the more elaborate approach does not always lead to more precise
estimates. On the other hand, the better performance of WLS® can be caused by
simplifying assumptions on the model describing the collected data which, in the
case of the experiment under consideration, are not fully justified.

Coming to details, first note that the estimate of gy, is non-negative, i.e. %
< 7, however, the difference between the effects 7 and 7 appeared to be not
significant (& = 0.05). On the other hand, the contrast g, is negative and
significant, which means that 7; < %. Thus we can conclude that the third variety,
POMORSKA, differs significantly from the other two, which behave similarly.

The conclusion above can be expressed in terms of probabilities which
provide a direct interpretation. According to the equality (6), the cumulative
probability ;. takes the form

v = exp(0j6+ri)
" 1+exp@ +7;) (12)
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where the effect 7; can be obtained through the equations (11). The estimates of
these probabilities are presented in Table 3.

Table 3. Estimates of cumulative probabilities

KOS PRH1599 POMORSKA
i=1 i=2 i=3
j=1lc=1 0.685 0.574 0.915
j=2,¢c=1 0.929 0.890 0.985
SLS j=1,¢=2 0.345 0.245 0.722
j=2,¢c=2 0.624 0.507 0.891
j=1,c= 0.124 0.081 0.412
j=2,c¢= 0.419 0.308 0.781
KOS PRH1599 POMORSKA
i=1 i=2 i=3
j=1lc=1 0.697 0.578 0.938
j=2,¢c=1 0.919 0.870 0.987
WLS° j=l,c=2 0.345 0.238 0.775
j=2,¢c=2 0.588 0.459 0.903
j=1,¢=3 0.159 0.101 0.553
j=2,¢=3 0.409 0.291 0.819
KOS PRH1599 POMORSKA
i=1 i=2 i=3
j=1,c=1 0.724 0.561 0.946
j=2,c=1 0.904 0.821 0.984
WLS j=1l,c=2 0.367 0.221 0.794
j=2,c=2 0.620 0.443 0.915
j=1l,c=3 0.172 0.092 0.580
j=2,¢=3 0.439 0.276 0.839

The detailed inspection of the obtained values confirms the differences
between the estimation methods, however, irrespective of the method used,
differences between corresponding extreme probabilities are smaller than those
between moderate probabilities. This is due to the non-linearity of the
transformation (12). On the other hand, the weighted least squares methods
(WLS®, WLS) provided probabilities which differentiate varieties more definitely
than the least squares method. This is especially visible for probabilities at the
second and third time point, and concerns distinct as well as similar varieties. In
any case, in all methods the third variety, POMORSKA, appeared to be the most
resistant to lodging.
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